General rules for constructing root loci 

To facilitate the application of the root-locus method for systems of higher order than 2nd, rules can be established. These rules are based upon the interpretation of the angle condition and the analysis of the characteristic equation. The rules presented aid in obtaining the root locus by expediting the manual plotting of the locus. But for automatic plotting using a computer these rules provide checkpoints to ensure that the solution is correct. 

Though the angle and magnitude conditions can also be applied to systems having dead time, in the following we restrict to the case of the open-loop rational transfer functions according to Eq. (6.3) 
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As this transfer function can be written in terms of poles and zeros [image: image2.png]
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can be represented by their magnitudes and angles 
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From Eq. (6.8) the magnitude condition 
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and from Eq. (6.9) the angle condition 
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follows. Here [image: image12.png]Pz,



and [image: image13.png]


denote the angles of the complex values [image: image14.png]—sz,)



and [image: image15.png]


, respectively. All angles are considered positive, measured in the counterclockwise sense. If for each point the sum of these angles in the [image: image16.png]


plane is calculated, just those particular points that fulfil the condition in Eq. (6.15) are points on the root locus. This principle of constructing a root-locus curve - as shown in Figure 6.3 - is mostly used for automatic root-locus plotting. 
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	Figure 6.3: Pole-zero diagram for construction of the root locus


In the following the most important rules for the construction of root loci for [image: image18.png]ko >0



are listed: 

Rule 1 Symmetry 

    As all roots are either real or complex conjugate pairs so that the root locus is symmetrical to the real axis. 

Rule 2 Number of branches 

    The number of branches of the root locus is equal to the number of poles [image: image19.png]


of the open-loop transfer function. 

Rule 3 Locus start and end points 

    The locus starting points ([image: image20.png]


) are at the open-loop poles and the locus ending points ( [image: image21.png]


) are at the open-loop zeros. [image: image22.png](n—m)



branches end at infinity. The number of starting branches from a pole and ending branches at a zero is equal to the multiplicity of the poles and zeros, respectively. A point at infinity is considered as an equivalent zero of multiplicity equal to [image: image23.png]


. 

Rule 4 Real axis locus 

    If the total number of poles and zeros to the right of a point on the real axis is odd, this point lies on the locus. 

Rule 5 Asymptotes 

    There are [image: image24.png]


asymptotes of the root locus with a slope of 
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For [image: image26.png]


and 4 one obtains the asymptote configurations as shown in Figure 6.4. 
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	Figure 6.4: Asymptote configurations of the root locus


Rule 6 Real axis intercept of the asymptotes 

    The real axis crossing [image: image28.png]


of the asymptotes is at 
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Rule 7 Breakaway and break-in points on the real axis 

     At least one breakaway or break-in point [image: image30.png](s, 10)



exists if a branch of the root locus is on the real axis between two poles or zeros, respectively. Conditions to find such real points are based on the fact that they represent multiple real roots. In addition to the characteristic equation (6.1) for multiple roots the condition 
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must be fulfilled, which is equivalent to 
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for [image: image33.png]


. If there are no poles or zeros, the corresponding sum is zero. 

Rule 8 Complex pole/zero angle of departure/entry 

    The angle of departure of pairs of poles with multiplicity [image: image34.png]


is 
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and the angle of entry of the pairs of zeros with multiplicity [image: image36.png]
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Rule 9 Root-locus calibration 

    The labels of the values of [image: image38.png]


can be determined by using 
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For [image: image40.png]


the denominator is equal to one. 

Rule 10 Asymptotic stability 

    The closed loop system is asymptotically stable for all values of [image: image41.png]


for which the locus lies in the left-half [image: image42.png]


plane. From the imaginary-axis crossing points the critical values [image: image43.png]


can be determined. 

The rules shown above are for positive values of [image: image44.png]


. According to the angle condition of Eq. (6.10) for negative values of [image: image45.png]


some rules have to be modified. In the following these rules are numbered as above but labelled by a *. 

Rule 3* Locus start and end points 

    The locus starting points ([image: image46.png]


) are at the open-loop poles and the locus ending points ( [image: image47.png]


) are at the open-loop zeros. [image: image48.png](n—m)



branches end at infinity. The number of starting branches from a pole and ending branches at a zero is equal to the multiplicity of the poles and zeros, respectively. A point at infinity is considered as an equivalent zero of multiplicity equal to [image: image49.png]


. 

Rule 4* Real axis locus 

    If the total number of poles and zeros to the right of a point on the real axis is even including zero, this point lies on the locus. 

Rule 5* Asymptotes 

    There are [image: image50.png]


asymptotes of the root locus with a slope of 
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Rule 8* Complex pole/zero angle of departure/entry 

    The angle of departure of pairs of poles with multiplicity [image: image52.png]


is 
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and the angle of entry of the pairs of zeros with multiplicity [image: image54.png]
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The root-locus method can also be applied for other cases than varying [image: image56.png]


. This is possible as long as [image: image57.png]Gals)



can be rewritten such that the angle condition according to Eq. (6.15) and the rules given above can be applied. This will be demonstrated in the following two examples. 

Example 6.2.1   Given the closed-loop characteristic equation 
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the root locus for varying the parameter [image: image59.png]


is required. The characteristic equation is therefore rewritten as 
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This form then correspondents to the standard form 
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to which the rules can be applied. [image: image62.png]



Example 6.2.2   Given the closed-loop characteristic equation 
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it is required to find the effect of the parameter [image: image64.png]


on the position of the closed-loop poles. The equation is rewritten into the desired form 
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Using the rules 1 to 10 one can easily predict the geometrical form of the root locus based on the distribution of the open-loop poles and zeros. Table 6.2 shows some typical distributions of open-loop poles and zeros and their root loci. 

	Table 6.2: Typical distributions of open-loop poles and zeros and the root loci

	[image: image67.png]No root locus No root locus
¥ o
1 X | 9 i
+ $iw
2 *—=0t— | 10 I
ol Al
3 % l o= | 1 x\: -
! ~
4 | 12 | e -
[ o
5 13
e
6 n -
Y
i
7 15
i
8 16 | wx .







For the qualitative assessment of the root locus one can use a physical analogy. If all open-loop poles are substituted by a negative electrical charge and all zeros by a commensurate positive one and if a massless negative charged particle is put onto a point of the root locus, a movement is observed. The path that the particle takes because of the interplay between the repulsion of the poles and the attraction of the zeros lies just on the root locus. Comparing the root locus examples 3 and 9 of Table 6.2 the 'repulsive' effect of the additional pole can be clearly seen. 

	Introduction 
A root loci plot is simply a plot of the s zero values and the s poles on a graph with real and imaginary coordinates.  The root locus is a curve of the location of the poles of a transfer function as some parameter (generally the gain K) is varied. 

The locus of the roots of the characteristic equation of the closed loop system as the gain varies from zero to infinity gives the name of the method.   Such a plot shows clearly the contribution of each open loop pole or zero to the locations of the closed loop poles. This method is very powerful graphical technique for investigating the effects of the variation of a system parameter on the locations of the closed loop poles.   General rules for constructing the root locus exist and if the designer follows them, sketching of the root loci becomes a simple matter.

The closed loop poles are the roots of the characteristic equation of the system.   From the design viewpoint, in some systems simple gain adjustment can move the closed loop poles to the desired locations.   Root loci are completed to select the best parameter value for stability.  A normal interpretation of improving stability is when the real part of a pole is further left of the imaginary axis.



Open and Closed Loop Transfer Functions
A control system is often developed into an equation as shown below 
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D(s) = (s -p 1).(s -p 2).. (s -p n) is the characteristic equation for the system ...

Normally n > m.
F(s) = 0 when s = z 1,z 2... z n..These values of s are called zeros
F(s) = infinity when s = p 1, p 2....p n...These values of s are called poles.. 
Below is shown a root loci plot with a zero of -2 and a pole of (-2 + 2 j ω ).   In practice one complex pole /zero always comes with a second one mirrored around the real axis
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The Transfer function F(s) can also be written in polar form using vectors(modulus-argument. 
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The complex numbers in polar form have the following elementary properties.. 

|z 1 .z 2 |= |z 1 |.|z 2 |..&..|z 1 / z 2 | = |z 1 | / |z 2 | 
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A typical feedback system is shown below 
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The open-loop transfer function between the forcing input R(s) and the measured output Y1(s) = 

T1(s) = K.G(s)H(s)
The closed-loop transfer function =
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K is the value of the open loop gain>
1+ KG(s)H(s) is the characteristic equation
A closed loop pole (when T(s) = infinity) must satisfy 

K.G(s).H(s) = -1
This is can be interpreted using vectors 
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If G(s) = Q(s)/P(s) and H(s) = W(s)/V(s) Then the characteristic equation for the open loop transfer function = 

P(s).V(s)= 0
The corresponding characteristic equation for the closed loop system = 

P(s).V(s) + K.Q(s)W(s) = 0 


Examples

Example 1
Consider system as diagram above with G(s) = 1/ s(s+2) , H(s) = 1
( P(s) = 1, V(s) = s(s+2), Q(s) =1, W(s) = 1) 

The closed loop characteristic equation = s 2 + 2s + K = 0

The roots of the characteristic equation 
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When K = 0 , the poles at s = 0, and s = -2
When K = 1, the pole is at s = -1
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The relevant root locus is shown below
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Example 2
Consider system as diagram above with G(s) = 2s / ( s 2+1) , H(s) = 1
( P(s) = s(s+1) , V(s) = 1, Q(s) =2s, W(s) = 1) 

The closed loop characteristic equation = P(s).V(s) + K.Q(s)W(s) = 0 
therefore s2 + 2Ks +1 = 0

The roots of the characteristic equation 
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When K = 0 , the poles at s = +j, and s = -j
When K = 1, the pole is at s = -1
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The relevant root locus is shown below

[image: image80.png]jo Axis





The system has the best stability point at K = -1, at values below this root loci moves towards the instability boundary.



Rules for Constructing Root Loci
These rules are listed with minimum clarification..For more details refer to reference links and reference texts.. The rules below are simple rules which obviate the need to completely solve the characteristic equation allowing the methods to be used for relatively complex systems.  The rules are based on those devised by R.Evans in an important paper in 1948.   They are therefore known as Evans Rules.  The rules only relate to positive changes in K.   For negative values of K a set of similar rules are used.

These rules relate to the open loop transfer function M(s).. 

1) Number of root loci.(branches)
The number of root loci is equal to the order of the closed loop characteristic equation F(s).. This is, for rational systems, the same order as the characteristic equation for the open loop transfer function i.e.the denominator of M(s)

2) Symmetry of loci 
The roots of the characteristic equation having real coefficient are symmetrical with respect to the real axis

3) Poles of M(s) 
The poles of M(s) lie on the root loci and correspond to K = 0.

4) Zeros of M(s) 
The zeros of M(s) lie on the root loci and correspond to K = infinity. If there are t more poles than zeros then t loci will become infinite as K approaches infinity

5) Asymptotes of root loci
If F(s) has t more poles than zeros, the root loci are asymptotic to t straight lines making angles.. 

(2 b + 1)π / t,      b = 0,1,2,...t-1,

with the real axis . The root loci approach symptotes when K -> infinity..

Symptote angle with real axis for Poles - zeros (t) = 1 -4

t= 1...Angle = π
t = 2...Angles = π / 2 ,3 π /2

t = 3 ...Angles = π/ 3 , π, (5 /3) π
t = 4...Angles = π / 4 ,   3 π /4 , 5 π/ 4,   7 π /4 

[image: image81.png]



6) Point of Intersection of asymptotes
Asymptotes intersect on the real axis at a point with abscissa

o = (1/t). [(p1 + p2 + ...pn) - (z1 + z2 + ...zm)]
p's and z's are respective poles and zeros of M(s).

7) Root loci on real axis
If M(s) has one or more real poles or zeros ,then the segment of the real axis having an odd number of real poles and zeros to its right will be occupied by a root locus. 
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8) Singular Points
Singular points indicate the presence of multiple characteristic roots, and occur at those values of s which for which dK/ds = 0..

9) Intersection of root loci with imaginary axis
The intersections of root loci with the imaginary axis can be located by calculating the values of K which result in the imaginary characteristic roots.

10) Slopes of root loci at complex poles and zeros
The slope of a root loci at a complex pole or zero of F(s) can be found at at point in the neighborhood of the pole or zero using the method shown below
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11) Calculation of K on the root loci.
The absolute magnitude of the value of K corresponding to any point so on a root locus can be found by measuring the lengths of the vectors drawn to so from the poles and zeros of F(s) and then evaluating 
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Examples of using Evans rules


Example 3) 

Consider the system with the open loop transfer function ( K > 0 & H(s) = 1 ) 

H(s)G(s) = K / (s2 + 3s + 2 ) = K / (s+1) (s+2)
Solving the Characteristic equation

Assuming negative feedback the characteristic equation = 

s2 + 3s + 2 + K = 0 
The Roots = 

[-3  √(9 - 4(2 + K)) ] / 2 = -1.5  √(0.25 -K ) 
The plot below is simply obtained by establishing the roots for values of K from 0 to infinity..

K = 0 ....s= -1, -2 
K = 0.25 ....s= -1.5 
K ->....s ->  


Using Evans rules 

System characteristic equation = 
1 + K /(s+1)(s+2) = 0.... therefore (s+1)(s+2) + K = 0 

1) The order of the characteristic equation = 2 therefore 2 poles.

2) The roots are symmetrical wrt the real axis

3) Poles correspond to K = 0, pole at -2, & - 1

4) Poles correspond to K = infinity no zeros 

5) The asymptotes angles... 2 more poles than zeros therefore angles are π /2 & 3 π /2

6) Point of intersection of the asymptotes with the real axis 
= (sum of poles - sum of zeros)/t = -1.5

7) The root loci lie to the left of the odd pole. (first pole)

8) Location of a singularity is at dK/ds = 0 = -1.5.
9), 10) & 11) Not necessary.

The plot below can easily be obtained.. 

[image: image85.png]





Example 4).

System has an open loop transfer function

K.G(s).H(s) = K (s + 1) / ( s2 .(s + 9))
closed loop characteristic equation i ..1 + K.G(s)H(s) = 0 therefore

s3 + 9s2 + K(s) + K = 0
Completing Evans Method.

1) There are three roots. 

2) The characteristic equation has real coefficients so the loci is symmetrical about the real axis.

3) When K = 0 there is a double pole at s = 0 (singular point) and also a pole at s = -9 

4) When K = infinity there are loci at s = -1 (zero) and s = infinity.

5) The asymptotes angles... 2 more poles than zeros therefore angles are π /2 & 3 π /2 

6) The location of the asymptotes intersect the real axis is calculated by .. ( 0 - 9 - (-1) ) /2 = 4 

7) Loci are to the left of odd poles/zeros's i.e left of -1 (between -1 & -9) 

8) The break point (singularity point on the real axis ) is obtained by determining the value of s which satisfies the equation dK/ds = 0..
Solving the closed loop characteristic equation for K = 

K = - (s3 + 9s2) / (s+1) 

Differentiating (using du/dv = (vdu-udv)/v2 ) 

(s3 + 9s2)-(s+1)(3s2 +18s) = 0 
...Therefore.. -2s3 - 12s2 -18s = 0 ... and.. -2s(s+3)2 - 0 Three solutions for s are at s = 0, s = -3 These are associated with a positive value of K when substituted into F(s). 

9) A Routh array is constructed to determine the imaginary axis crossing points. ref Routh Stability Criteria 
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There is no sign change in column 1 for positive values of K so there is locus does not enter the right hand side of imaginary axis.. 

10 ) Rule not needed for this example..

The root locus plot is produced for this system as shown below...
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Closed Loop Transient Response 

The transient response of a closed-loop system is closely related to the location of the closed loop poles.

[image: image87.png]A meppanyperors

]/CM(

omplex conlagae i of ros
T post 1o ans remng oscttr

Goin o g
Factor sxciudes

g o

[=rern
i)

STABILITY BOUNDARY \

Posie rolroots ging oxpononially
resaing cupet

Exponenta docay

ot -
B Ty ey pre—e——r——— v




Many control systems can be represented by the general second order differential equation.. 
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The coefficient (assumed positive) ωn is the undamped natural frequency and ζ is the damping ratio.

· If ζ > 1 Then both poles are negative and real

· If ζ = 1 Then both poles are equal,negative and real ( s =   - ω n) 

· If 0 < ζ < 1 The poles are complex conjugates with negative real parts. s = -ζω n ± j ω n.Sqrt( 1 - ζ 2 )

· If ζ = 0 Then both poles are imaginary and complex conjugate s = ± j ωn
· If ζ <0 Then both poles are in the RHS of the plane 

The results of this equation can be shown on a s plane plot as below..
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Example of an application of the root-locus method 

The systematic application of the rules from section 6.2 for the construction of a root locus is shown in the following non-trivial example for the open-loop transfer function 
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	(6.26)


The degree of the numerator polynomial is [image: image91.png]


. This means that the transfer function has one zero ( [image: image92.png]521



). The degree of the denominator polynomial is [image: image93.png]


and we have the four poles ( [image: image94.png]


, [image: image95.png]


, [image: image96.png]


, [image: image97.png]


2). First the poles (x) and the zeros (o) of the open loop are drawn on the [image: image98.png]


plane as shown in Figure 6.5. According to rule 3 these poles are just 
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	Figure 6.5: Root locus of [image: image100.png]- ko (etl)
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. Values of [image: image101.png]


are in red and underlined.


those points of the root locus where [image: image102.png]


and the zeros where [image: image103.png]


. We have [image: image104.png]


branches that go to infinity and the asymptotes of these three branches are lines which intercept the real axis according to rule 6. From Eq. (6.17) the crossing is at 
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	(6.27)


and the slopes of the asymptotes are according to Eq. (6.16) 
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The asymptotes are shown in Figure 6.5 as blue lines. Using Rule 4 it can be checked which points on the real axis are points on the root locus. The points [image: image108.png]


with [image: image109.png]—l<eg<0



and [image: image110.png]


belong to the root locus, because to the right of them the number of poles and zeros is odd. According to rule 7 breakaway and break-in points can only occur pairwise on the real axis to the left of -2. These points are real solutions of the Eq. (6.19). Here we have 
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	(6.29)


or 
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This equation has the solutions [image: image113.png]
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and [image: image115.png]s, , = —0.76 & j0.866



. The real roots [image: image116.png]


and [image: image117.png]


are the positions of the breakaway and the break-in point. The angle of departure [image: image118.png]


of the root locus from the complex pole at [image: image119.png]


can be determined from Figure 6.6 according to Eq. (6.20): 
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	Figure 6.6: Calculating the angle of departure [image: image124.png]


of the complex pole [image: image125.png]





With this specifications the root locus can be sketched. Using rule 9 the value of [image: image126.png]


can be determined for some selected points. The value at the intersection with the imaginary axis is 
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